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perimentally derived data's (AC* = 10.22 kcal/mol, AS1 = 
2.8 eu, and A//* = 10.8 kcal/mol). In the years between 
these two reports a wide range of enthalpies and entropies 
of activation (A//* = 9.0 to 11.5 kcal/mol, AS1 = -6 .5 to 
4.9 eu) were reported. In contrast, the AC* values are rela­
tively invariant. The difficulties in determining accurate 
enthalpies of activation, even though accurate free energies 
of activation can be determined, have been discussed else­
where.3 

Inaccuracies in the NMR method can be separated into 
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Table I. Activation Parameters Reported for Ring Inversion in 
Cyclohexane and Cyclohexane-rf,, 

Compd 

C6H12 

C6H12 

C6H12 

C6HD11 

C6HD11 

C6H12 

C6HDn 

C6HD11 

a At ca. -67° 

AGt" 

10.1 
10.3 
10.7 
10.3 
10.2 
10.3 
10.3 
10.22 

^ Estimates, 

AHt 

(10.8)* 
9.0 ± 0.2 

11.5 
10.9 ± 0.6 
10.5 ± 0.5 

9.1 ± 0.5 
9.1 ± 0.1 

10.8 

see ref 2. 

ASt 

(3.6)6 
-6 .5 ± 1.0 

4.9 
2.9 ± 2.3 
1.4 ± 1.0 

-5 .8 ± 2.4 
-5 .8 + 0.4 

2.8 

Ref 

la 
lb 
Ic 
Id 
Ie 
If 
If 
Ig 

three categories. First, accurate temperature control and 
measurement in the NMR probe is difficult. Second, inter­
pretation of complex spin-coupled spectra to yield rate con­
stants has not been possible with the simplified equations 
used to describe line shapes (using the method of line width 
measurements to obtain rates above and below the coales­
cence point is extremely prone to introduction of systematic 
errors and thus use of rate constants determined by this 
method often led to erroneous activation enthalpies and en­
tropies).30 Third, noncomplex spin systems (equilibrium AB 
=== BA, etc.) undergo their complete spectral change in a 
matter of a few degrees. Any systematic errors introduced 
over such a short temperature range are unlikely to be det­
ected.33 

Recently, improvements in the computer programs avail­
able to interpret NMR spectra of exchanging systems have 
become available.4 Since the type of program now available 
(DNMR3) allows complex spin spectra to be produced under 
exchange conditions, rate constants can be determined over 
a much larger range of temperatures. (In complex spin-cou­
pled systems, coupling in the fast-exchange spectrum disap­
pears first as the temperature is lowered, followed by ap­
pearance of the separate nonexchanging spectra of the dif­
ferent nuclei. Finally, fine structure due to coupling begins 
to appear in the nonexchanging spectrum as the tempera­
ture is lowered even further.) This method of analysis has 
been applied to azacycloheptatrienes and norcaradienes.3c 

In our laboratory a variable temperature NMR probe ca­
pable of maintaining and measuring a temperature to better 
than ±0.1° has been constructed.5 This probe, used in con­
junction with program DNMR3 on a highly coupled system, 
should in theory yield accurate rate constants over a large 
temperature range. These could then be used to determine 
an accurate enthalpy and entropy of activation for an ex­
change process. A number of heterocyclic six-membered 
rings would provide the necessary complex spin system de­
sired (there is, however, a limitation on the complexity of 
the systems which are analyzable by DNMR3). 1,4-Oxa-
thiane fulfills all of the requirements of a complex spin-cou­
pled system and has the additional advantage of having an 

/£&- <X> - (1) 

chair twist intermediate chair 

almost first-order spectrum at low temperature which is 
easily analyzable for its static parameters. Additionally, the 
ring inversion barrier for this six-membered ring has not 
been reported. 

Results and Discussion 

In Figure 1 is shown the 100 MHz 1H NMR spectrum of 
1,4-oxathiane at -111.7°. Peaks labeled A and B arise 
from the hydrogens on the carbons attached to oxygen 

Figure 1. The slow exchange spectrum (100 MHz) of 1,4-oxathiane at 
-111.7° (upper) (solvent, vinyl chloride; internal standard, TMS) and 
the calculated spectrum using DNMR3 and the static parameters listed 
in Table II with Ti = 0.24 (the apparent relaxation time) and k = 7.5 
sec -1. The four different proton resonances are labeled A, B, C, and D 
as described in the text. 

Table II. Static Parameters of the Low-Temperature Spectrum of 
1,4-Oxathiane Obtained by the Best Fit Computer Simulation of 
the Observed Spectrum 

Chemical shifts" 

vK = 405.7 
v^ = 360.0 
vc = 287.4 
yD = 220.9 

Coupling constants, Hz 

^AB = - H . 8 
/AC = 3.2 
/ A D = 2.0 
/BC = H-6 
^BD = 1-4 
/CD = -14.0 

«In Hz downfield from TMS lock (100 MHz). 

while C and D arise from the hydrogens on the carbons next 
to sulfur. Chemical shifts of the four resonances are listed 
in Table II as well as the coupling constants obtained by 
computer simulation (see Figure 1). The large negative JAB 
and JCD are the respective geminal coupling constants. 
Since the remaining coupling constants are small except for 
/BC this coupling is assigned to axial-axial coupling and 
therefore B and C are respectively the axial proton next to 
oxygen and the axial proton next to sulfur. Thus, for the 
protons on the carbon attached to sulfur, the resonance of 
the axial proton appears downfield from that of the equato­
rial proton. The reason for this reversal of the normal rela­
tive positions of axial and equatorial protons in the cyclo­
hexane system is not known. The observation of this rever­
sal makes the assignment of axial and equatorial position 
solely on the basis of relative chemical shift more tenuous in 
other systems. 

Using the spectral parameters listed in Table Il a series 
of spectra were calculated with program DNMR3 and com­
pared with the observed spectra. A few selected experimen­
tal and calculated spectra are shown in Figure 2. Rate con­
stants for chair-to-twist intermediate are assumed to be 
twice those obtained for the chair-to-chair interconversion 
as obtained from the comparison with the computed spec­
tra. In this treatment it is assumed that the twist intermedi­
ates, one of which is shown in eq 1, interconvert rapidly and 
hence have an equal probability of returning to either chair 
form. The rate constants for chair-to-twist intermediate are 
listed in Table III along with the free energy of activation 
calculated at each temperature. 
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Table III. Rate Constants for the Chair-to-Twist Interconversion 
of 1,4-Oxathiane 

Normal probe 
temperature 
(about 33°) 

^ " ^ , u ~*»\<,**iw,t,/*4j r*-

Figure 2. Experimental (upper) and calculated (lower) spectra of 1,4-
oxathiane at various temperatures. The chemical shifts and coupling 
constants used to calculate the spectra with DNMR3 are given in Table 
Il (T1 = 0.24). Rates calculated by the computer program are for the 
chair-to-chair interconversion and are half the rate for the chair-to-
twist-chair interconversion. 

These data which cover a 47° range in temperatures 
show little deviation from linearity (Figure 3) when plotted 
with the Eyring equation (using a weighted linear least-
squares computer program6). Because of the large tempera­
ture range over which the data were obtained, the effect of 
systematic errors in the data is minimized in the calculation 
of the enthalpy (A//+ = 8.78 ± 0.07 kcal/mol) and entropy 
(AS* = 0.45 ±0.35eu). 

It has been pointed out that translational, rotational, and 
vibrational contributions to the entropy of activation in ring 

k, see-10 

20 ± 5 
25 + 5 
30 ± 5 
35 ± 5 
45 ±4 
65 + 5 
70 ±5 
85 ± 10 
150 ± 10 
220 ± 20 
260 + 20 

2200 ± 200 
2600 ± 200 
3200 ± 200 
3400 + 200 
4200 ± 200 
4800 ± 300 
5800 ±400 
6200 ±400 
7000 + 600 

T, °K* 

168.05 
170.00 
172.06 
172.86 
174.72 
175.97 
177.20 
178.65 
183.10 
185.67 
186.92 
203.35 
205.99 
207.84 
209.26 
210.94 
211.47 
212.67 
213.75 
215.12 

AF^, kcal/mol 

8.65 
8.68' 
8.72 
8.71 
8.72 
8.66 
8.69 
8.70 
8.72 
8.70 
8.70 
8.64 

8.69 
8.68 
8.72 
8.71 
8.67 
8.65 
8.66 
8.67 

a The actual rate constant calculated by DNMR3 is one-half of 
these values and represents the chair-to-chair interconversion con­
stant. bThe error for these temperatures is ±0.1°. 

Figure 3. A calculation of the activation parameters of 1,4-oxathiane 
by a weighted linear least-squares analysis of the rate data in Table 111 
using the Eyring equation. 

reversals are probably small.Ia'3a An estimate of this quan­
tity can be made solely on the basis of reaction path degen­
eracies for hydrocarbons such as cyclohexane. For com­
pounds containing polar groups differential solvation may 
occur in the ground and transition states and therefore some 
uncertainty exists regarding the validity of predicting reac­
tion path degeneracies from observed AS1*, and vice versa, 
in such compounds. 

If dipolar effects are small, the reaction path degeneracy 
is obtained in the following manner. There are three possi­
ble half-chair transition states (plus their mirror images) 

and no attempt has been made to estimate their relative 
energies. If all these transition states are of equal energy, 
the degeneracy, which includes the mirror images, is six and 
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the entropy due to reaction path multiplicity equals R In 6 
or 3.6 eu.7 If two paths predominate, this contribution to 
the entropy equals R In 4 or 2.8 eu. If one path is of an ap­
preciably lower energy than the other two, AS* ~ /? In 2 ~ 
1.4 eu. Since the experimentally determined entropy, 0.45 
± 0.35 eu, is believed to be reliable, the results suggest that 
one pathway predominates. This derivation is valid only if 
the principal factor contributing to AS* is the reaction de­
generacy. 

Experimental Section 

A Varian 100 MHz NMR spectrometer equipped with a spe­
cially constructed low-temperature NMR probe was usedfor all 
spectra.5 This probe allowed determination of the temperature to 
±0.1°. 

Computer program DNMR3 was obtained from Quantum 
Chemistry Program Exchange8 and adapted9 to the CDC 6400 
computer at the University of California, Berkeley. Computed 
spectra were visually compared with experimental spectra to ob­
tain the best fit.3c Each experimental spectrum was also compared 
with computed spectra with rates higher and lower than the "best 
fit" calculated rate spectrum. Those that could be visually distin­
guished from the match with the "best fit" spectrum were assumed 
to represent the limit of error for each rate. These error limits are 
likely overestimations of the actual error in comparing computed 
and experimental spectra. 

Preparation of NMR Sample. The sample was prepared on a 
vacuum line using dried degassed vinyl chloride, TMS, and 1,4-
oxathiane which were transferred from the drying agents into the 
NMR tube. Drying agents were as follows: vinyl chloride, phos­
phorous pentoxide; TMS and 1,4-oxathiane, calcium hydride. The 
quantities of each solvent and the compound being transferred into 
the NMR tube were measured by a prior condensation into a cali­
brated tube (accuracy ±5%) on one arm of a T-tube followed by 
condensation into the NMR tube which was attached to the other 
arm of the T-tube. After transferring both solvents and the oxa-
thiane, the NMR tube was degassed again and sealed with a torch. 
In all measurements, the amounts of the components were as fol-

Alkyl fluorides, chlorides, bromides, and iodides react 
with alkali naphthalenes through initial, rate-determining 
dissociative electron transfer steps (eq I).1 Unlike the oth-

RX + MC 1 0H 8 -R- + M F + C10H8 (1) 

ers, the alkyl fluoride reactions are slow enough to monitor 
with conventional "slow reaction" techniques. Garst and 
Barton found a substantial metal ion effect on the rates of 

lows: 60 n\ of 1,4-oxathiane, 55 ix\ of TMS, and 350 yl of vinyl 
chloride. 

1,4-Oxathiane was obtained from Aldrich Chemical Company 
and revealed only one peak by gas chromatography on a 10 ft X 
0.25 in. FFAP on Chromsorb W column at 60°. 
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reactions of 5-hexenyl fluoride with alkali naphthalenes in 
DME. The second-order rate constant for the reaction of 
lithium naphthalene is 104 times that for potassium naph­
thalene, with sodium naphthalene intermediate. As a work­
ing hypothesis, it was proposed that negative charge is more 
concentrated or localized in the activated complexes than in 
naphthalene radical anion. This hypothesis was the basis of 
the prediction that solvents of better cation solvating ability 
would slow the reaction.' 
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Abstract: Among the ethers 1,2-dimethoxyethane, tetrahydrofuran, and 2-methyltetrahydrofuran, solvent effects on the 
rates of reactions of sodium naphthalene with hexyl fluoride are very small. Addition of tetraglyme, dicyclohexyl-18-crown-
6, or 18-crown-6 gives a somewhat larger effect so that the total spread in second-order rate constants through these media is 
about 10. Increased cation solvating capacity of the medium slows the reactions. No curvature was detected in Arrhenius 
plots. These solvent effects trend in the opposite direction from those reported for similar reactions of alkyl chlorides, bro­
mides, and iodides. The data suggest that negative charge derealization characterizes the transition states for alkyl chlo­
rides, bromides, and iodides, but that the negative charge in the transition state for a reaction of an alkyl fluoride is slightly 
localized relative to that of the naphthalene radical anion. 
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